Digital and Microprocessor Fundamentals: Theory and Applications, William Kleitz, Prentice Hall PTR, 1997, 0133817903, 9780133817904, . Focusing on the "must-know," this text provides one-volume coverage of the fundamentals of both digital electronics and microprocessors, helping the reader to become proficient at both the hardware and software aspects of microprocessor-based systems. It uses a simple, easy-to-understand writing style, an abundance of clearly explained examples, and nearly 1,000 illustrations to explain practical applications and problems using industry-standard ICs and circuits and schematics that the reader will encounter on the job. Important features of this text are many: coordinates digital/microprocessor coverage throughout the text; first provides all theory required to understand a particular IC or circuit, then gives examples of its use; includes examples and system design applications that give a complete explanation of circuit operation - with all required hardware and software, so they can be duplicated in the lab; uses the 8085A microprocessor and 8051 microcontroller to explain the fundamentals of microprocessor architecture, programming, and hardware; clearly explains the microprocessor program solutions for the 8085 and 8051; includes a glossary for each chapter; and contains a Supplementary Index of ICs and an Instruction Set Reference Encyclopedia. Complete with end-of-chapter summaries, numerous appendixes, and schematic interpretation problems (all of which are new to this second edition), this text is an essential source for the fundamentals of theory and applications..

DOWNLOAD http://bit.ly/1aUg6CX

Digital fundamentals with PLD programming , Thomas L. Floyd, 2006, Computers, 1009 pages. Reflecting lengthy experience in the engineering industry, this bestseller provides thorough, up-to-date coverage of digital fundamentals from basic concepts to microprocessors

Microprocessor and Microcontroller Fundamentals The 8085 and 8051 Hardware and Software, William Kleitz, 1998, Computers, 262 pages. Short, concise, and easily-accessible, this book uses the 8085A microprocessor and 8051 microcontroller to explain the fundamentals of microprocessor architecture, programming

Digital Electronics , Michael Wiesner, 1995, , 195 pages. Very few chanages have been made for this [edition] of the lab manual.... The expanded troubleshooting and C-mos sections added in the edition ... were enthusiastically

Digital Systems And Microprocessor , A.P.Godse, D.A.Godse, Jan 1, 2009, , 496 pages. .

Digital electronics, Sanjay K. Bose, Apr 4, 1986, 408 pages. A self-contained, balanced introduction to digital system design using SSI and MSI. Following a discussion of basic concepts, Bose focuses on microprocessors and their usage.

Lab experiments--Digital electronics, a practical approach, Michael Wiesner, 1990, Computers, 193 pages.

Digital Electronics A Practical Approach, William Kleitz, Jan 1, 1987, Digital electronics, 508 pages. This easy-to-understand book illustrates practical applications using circuits the user will face in the design engineer field. Electronics Workbench CD-ROM included contains all essential materials.

For one-semester consolidated courses in Digital and Microprocessor Fundamentals, or one-semester courses in Digital Fundamentals followed by one-semester courses in Microprocessor Fundamentals. Focusing on the "must know" essentials, this text provides single-volume coverage of the fundamentals of both digital electronics and microprocessors--helping students become proficient at both hardware and software principles. It uses a simple, easy-to-understand writing style, an abundance of clearly explained examples, and nearly 1,000 illustrations to explore practical applications and problems using industry-standard ICs, circuits, and schematics that students will encounter on the job.

New! Introducing the tech.book(store), a hub for Software Developers and Architects, Networking Administrators, TPMs, and other technology professionals to find highly-rated and highly-relevant career resources. Shop books on programming and big data, or read this week's blog posts by authors and thought-leaders in the tech industry. > Shop now

Key Benefit: Kleitz develops a working knowledge of both digital electronics and microprocessors in this single, comprehensive volume. Key Topics: His approach sticks to the fundamentals that are absolutely necessary to build a solid foundation for the growth of knowledge, fully preparing readers for more advanced topics.

This book explores practical applications and problems using industry-standard ICs, circuits, and schematics that readers encounter on the job. Focusing on the "must know" essentials, it provides single-volume coverage of the fundamentals of digital electronics and microprocessors, exploring both hardware and software principles. Discussions of today's most recent tools and techniques includes sections on ASCII code; applications of number systems; annotated data sheets; biCMOS, LVT, and HCT logic families; arithmetic circuits; adder ICs; system design applications using microcontrollers; practical I/O considerations; octal D flip-flop interface to a microcontroller; and the SDK-85 microprocessor trainer. For engineering/engineering technology programmers and system designers.

Focusing on the "must-know", this text provides one-volume coverage of the fundamentals of both digital electronics and microprocessors, helping the reader to become proficient at both the hardware and software aspects of microprocessor-based systems. It uses a simple, easy-to-understand writing style, an abundance of clearly explained examples, and nearly 1,000 illustrations to explain practical applications and problems using industry-standard ICs and circuits and schematics that the reader will encounter on the job. Important features of this text are many: coordinates digital/microprocessor coverage throughout the text; first provides all theory required to understand a particular IC or circuit, then gives examples of its use; includes examples and system design applications that give a complete explanation of circuit operation - with all required hardware and software, so they can be duplicated in the lab; uses the 8085A microprocessor and 8051 microcontroller to explain the fundamentals of microprocessor architecture, programming, and
hardware; clearly explains the microprocessor program solutions for the 8085 and 8051; includes a glossary for each chapter; and contains a Supplementary Index of ICs and an Instruction Set Reference Encyclopedia. Complete with end-of-chapter summaries, numerous appendixes, and schematic interpretation problems (all of which are new to this second edition), this text is an essential source for the fundamentals of theory and applications.

Kleitz (Tompkins Cortland Community College) updates his textbook for either an accelerated one-semester course integrating fundamentals of digital and microprocessor technology, or two one-semester courses. The first chapters explain digital fundamentals, which are then referred to from the later section on microprocessors. Students are assumed to have no background in either subject, and to have a mathematics sophistication typical for a vocational school of two or four years. The first edition appeared in 1990 and the second in 1997. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Terms of Sale: We guarantee the condition of every book as it's described on the Abebooks web sites. If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days. 100% Satisfaction Guaranteed!

Portions of this page may be (c) 2006 Muze Inc. Some database content may also be provided by Baker & Taylor Inc. Copyright 1995-2006 Muze Inc. For personal non-commercial use only. All rights reserved. Content for books is owned by Baker & Taylor, Inc. or its licensors and is subject to copyright and all other protections provided by applicable law.

http://edufb.net/1754.pdf