
DOWNLOAD HERE

Art Songs and Arias High Voice, Leonard Bernstein, Jan 30, 2007, , . A new collection, including previously unpublished material and new transcriptions, with some selections never before published separately from complete vocal scores. High

Writings in jazz , Nathan Tate Davis, 1978, Music, 172 pages. .

Enjoying jazz , Henry Martin, Jan 1, 1986, Music, 302 pages. .

Jazz , Paul Tanner, David W. Megill, Maurice Gerow, 2005, Music, 350 pages. Accompanying CD-ROM contains ... "demonstration recordings to illustrate jazz styles; instrument film clips; flashcards to review key terms; timelines; matching quizzes." -- p

An introduction to music and art in the Western World , Milo Arlington Wold, Edmund Cykler, 1959, History, 320 pages. .

Writing about music an introductory guide, Richard Wingell, 2002, Language Arts & Disciplines, 171 pages. Helping users write clear, convincing, persuasive prose on musical topics, this practical guide focuses on general writing issues as well as special challenges of writing about

Historical Knowledge, Historical Error A Contemporary Guide to Practice, Allan Megill, Feb 1, 2007, History, 288 pages. In the past thirty years, historians have broadened the scope of their discipline to include many previously neglected topics and perspectives. They have chronicled language

The Jazz Age , Francis Scott Fitzgerald, 1996, Fiction, 83 pages. A collection of autobiographical essays offers the author's impressions of privileged American life during the 1920s, his rise to fame and subsequent decline, and the attitudes

Introduction to jazz history , Donald D. Megill, Richard S. Demory, 1984, , 259 pages. This classic chronological survey of jazz history brings the various historical styles to life by exploring them through the lives of the musicians and a study of their

The Story of jazz from New Orleans to rock jazz, Joachim Ernst Berendt, 1978, Music, 192 pages. .

Karl Marx The Burden of Reason (why Marx Rejected Politics and the Market), Allan Megill, 2002,
Philosophy, 367 pages. Why did Karl Marx want to exclude politics and the market from his vision of a future socialism? Allan Megill begins with this question. In answering it, he forces the reader

A study of jazz, Paul Tanner, Maurice Gerow, 1984, 242 pages.

Jazz styles history & analysis, Mark C. Gridley, 1985, 445 pages.

A comprehensive manual addressing every aspect of recording and shows step-by-step how to set up a small independent recording label for promoting and marketing from one to many titles. Contains mini-case histories of independent record companies, showing how the techniques discussed can and are being used successfully in every genre of music. Covers recording and editing technologies, marketing formats, sampling and copyright issues. Features an extensive bibliography and resource directory.

The earliest form of musical notation can be found in a cuneiform tablet that was created at Nippur, in Sumer (today's Iraq), in about 2000 BC. The tablet represents fragmentary instructions for performing music, that the music was composed in harmonies of thirds, and that it was written using a diatonic scale.[1] A tablet from about 1250 BC shows a more developed form of notation.[2] Although the interpretation of the notation system is still controversial, it is clear that the notation indicates the names of strings on a lyre, the tuning of which is described in other tablets.[3] Although they are fragmentary, these tablets represent the earliest notated melodies found anywhere in the world.[4]

Ancient Greek musical notation was capable of representing pitch and note-duration, and to a limited extent, harmony.[citation needed] It was in use from at least the 6th century BC until approximately the 4th century AD; several complete compositions and fragments of compositions using this notation survive. The notation consists of symbols placed above text syllables. An example of a complete composition is the Seikilos epitaph, which has been variously dated between the 2nd century BC to the 1st century AD. Three hymns by Mesomedes of Crete exist in manuscript. The Delphic Hymns, dated to the 2nd century BC, also use this notation, but they are not completely preserved. Ancient Greek notation appears to have fallen out of use around the time of the Decline of the Roman Empire.

Saint Yared (Ge'ez: ከሬድ) (April 25, 505 – May 20, 571) was a semi-legendary Ethiopian musician credited with inventing the sacred music tradition of the Ethiopian Orthodox Church and Ethiopia's system of musical notation. He is responsible for creating the Zema or the chant tradition of Ethiopia, particularly the chants of the Ethiopian Orthodox Tewahedo Church, which are still performed today.

The five volumes of Yared's Zema composition are: Digua, Tsome Digua, Miraf, Zimare, and Mewasit. Processional Ethiopian cross, drum, sistrum, and tau-cross staff are also illustrated in the cover. Each of these categories are further classified with three musical scales (Kegnitoch) that are reported to contain all the possible musical scales:

Musical scholars regard these scales as sufficient to encompass all the musical scores of the world. These scales are sources of chants or songs of praise, tragedy or happiness. These scales are symbolized as the father, the son and the Holy Spirit in the tradition. (Source: http://www.tadias.com/11/29/2007/st-yared-the-great-ethiopian-composer/)

Byzantine music is vocal religious music, based on the monodic modal singing of Ancient Greece and the pre-Islamic Near East. The notation developed for it is similar in principle to subsequent
Western notation, in that it is ordered left to right, and separated into measures. The main difference is that notation symbols are differential rather than absolute, i.e. they indicate pitch change (rise or fall), and the musician has to deduce correctly, from the score and the note they are singing presently, which note comes next. The pitch symbols themselves resemble brush strokes and are colloquially called gántzoi (“hooks”) in Modern Greek. Notes themselves are represented in written form only between measures, as an optional reminder, along with modal and tempo directions if needed. Additional signs are used to indicate embellishments and microtones (pitch changes smaller than a semitone), both essential in Byzantine chant (see Romanian anastasimatarion picture, left).

The seven standard note names in Byzantine “solfege” are: pá, vú, ghá, dhē, ké, zō, nē, corresponding to Western re, mi, fa, sol, la, si, do. Byzantine music uses the eight natural, non-tempered scales called Â’khoi, “sounds”, exclusively, and therefore the absolute pitch of each note may slightly vary each time, depending on the particular Â’khoi used. Byzantine notation is still used in many Orthodox Churches. Some cantors can also use standard Western notation while adding non-notatable embellishment material from memory and "sliding" into the natural scales from experience.

In 1252, Safi al-Din al-Urmawi developed a form of musical notation, where rhythms were represented by geometric representation. Many subsequent scholars of rhythm have sought to develop graphical geometrical notations. For example, a similar geometric system was published in 1987 by Kjell Gustafson, whose method represents a rhythm as a two-dimensional graph.[5]

Scholar and music theorist Isidore of Seville, writing in the early 7th century, considered that "unless sounds are held by the memory of man, they perish, because they cannot be written down."[6] By the middle of the 9th century, however, a form of neumatic notation began to develop in monasteries in Europe as a mnemonic device for Gregorian chant, using symbols known as neumes; the earliest surviving musical notation of this type is in the Musica disciplina of Aurelian of Réôme, from about 850. There are scattered survivals from the Iberian Peninsula before this time, of a type of notation known as Visigothic neumes, but its few surviving fragments have not yet been deciphered.[7] The problem with this notation was that it only showed melodic contours and consequently the music could not be read by someone who did not know the music already.

To address the issue of exact pitch, a staff was introduced consisting originally of a single horizontal line, but this was progressively extended until a system of four parallel, horizontal lines was standardized. This is traditionally attributed to Guido of Arezzo, who set out his thoughts on the changes in his first musical treatise, Micrologus. The vertical positions of each mark on the staff indicated which pitch or pitches it represented (pitches were derived from a musical mode. Although the four-line staff has remained in use until the present day for plainchant, for other types of music, staves with differing numbers of lines have been used at various times and places for various instruments. The modern five-line staff was first adopted in France and became almost universal by the 16th century (although the use of staves with other numbers of lines was still widespread well into the 17th century).[citation needed]

Notation had developed far enough to notate melody, but there was still no system for notating rhythm. A mid-13th-century treatise, De Mensurabili Musica, explains a set of six rhythmic modes that were in use at the time,[8] although it is not clear how they were formed. These rhythmic modes were all in triple time and rather limited rhythm in chant to 6 different repeating patterns. This was a flaw seen by German music theorist Franco of Cologne and summarised as part of his treatise Ars cantus mensurabilis (the art of measured chant, or Mensural notation). He suggested that individual notes could have their own rhythms represented by the shape of the note. Not until the 14th century did something like the present system of fixed note lengths arise. The use of regular measures (bars) became commonplace by the end of the 17th century.

The founder of what is now considered the standard music stave was Guido d'Arezzo,[9] an Italian Benedictine monk who lived from about 991 until after 1033. He taught the use of solmization syllables based on a hymn to Saint John the Baptist, which begins Ut Queant Laxis and was written...
by the Lombard historian Paul the Deacon. The first stanza is:

Guido used the first syllable of each line, Ut, Re, Mi, Fa, Sol and La, to read notated music in terms of hexachords; they were not note names, and each could, depending on context, be applied to any note. In the 17th century, Ut was changed in most countries except France to the easily singable, "open" syllable Do, said to have been taken from the name of the Italian theorist Giovanni Battista Doni.[10]

The system uses a five-line staff. Pitch is shown by placement of notes on the staff (sometimes modified by accidentals), and duration is shown with different note values and additional symbols such as dots and ties. Notation is read from left to right, which makes setting music for right-to-left scripts difficult.

A staff (or stave, in British English) of written music generally begins with a clef, which indicates the position of one particular note on the staff. The treble or G clef was originally a letter G and it identifies the second line up on the five line staff as the note G above middle C. The bass or F clef shows the position of the note F below middle C. Notes representing a pitch outside of the scope of the five line staff can be represented using ledger lines, which provide a single note with additional lines and spaces.

In music for ensembles, a "score" shows music for all players together, while "parts" contain only the music played by an individual musician. A score can be constructed from a complete set of parts and vice versa. The process can be laborious but computer software offers a more convenient and flexible method.

Figured bass notation originated in Baroque basso continuo parts. It is also used extensively in accordion notation. The bass notes of the music are conventionally notated, along with numbers and other signs that determine the chords to play. It does not, however, specify the exact pitches of the harmony, leaving that for the performer to improvise.

A chord chart or "chart" contains little or no melodic information at all but provides detailed harmonic and rhythmic information, using slash notation and rhythmic notation. This is the most common kind of written music used by professional session musicians playing jazz or other forms of popular music and is intended primarily for the rhythm section (usually containing piano, guitar, bass and drums).

The shape note system is found in some church hymnals, sheet music, and song books, especially in the Southern United States. Instead of the customary elliptical note head, note heads of various shapes are used to show the position of the note on the major scale. Sacred Harp is one of the most popular tune books using shape notes.

In the notation of Indian rāga, a solfege-like system called sargam is used. As in Western solfege, there are names for the seven basic pitches of a major scale (Shadja, Rishabh, Gandhar, Madhyam, Pancham, Dhaivat and Nishad, usually shortened Sa Re Ga Ma Pa Dha Ni). The tonic of any scale is named Sa, and the dominant Pa. Sa is fixed in any scale, and Pa is fixed at a fifth above it (a Pythagorean fifth rather than an equal-tempered fifth). These two notes are known as achala swar (‘fixed notes’). Each of the other five notes, Re, Ga, ma, Dha and Ni, can take a ‘regular’ (shuddha) pitch, which is equivalent to its pitch in a standard major scale (thus, shudha Re, the second degree of the scale, is a whole-step higher than Sa), or an altered pitch, either a half-step above or half-step below the shuddha pitch. Re, Ga, Dha and Ni all have altered partners that are a half-step lower (Komal-“flat”) (thus, komal Re is a half-step higher than Sa). Ma has an altered partner that is a half-step higher (teevra-“sharp”) (thus, tivra Ma is an augmented fourth above Sa). Re, Ga, ma, Dha and Ni are called vikrut swar (‘movable notes’). In the written system of Indian notation devised by Ravi Shankar, the pitches are represented by Western letters. Capital letters are used for the achala swar, and for the higher variety of all the vikrut swar. Lowercase letters are used for the lower variety of the vikrut swar.

The earliest known examples of text referring to music in China are inscriptions on musical
instruments found in the Tomb of Marquis Yi of Zeng (d. 433 B.C.). Sets of 41 chimestones and 65 bells bore lengthy inscriptions concerning pitches, scales, and transposition. The bells still sound the pitches that their inscriptions refer to. Although no notated musical compositions were found, the inscriptions indicate that the system was sufficiently advanced to allow for musical notation. Two systems of pitch nomenclature existed, one for relative pitch and one for absolute pitch. For relative pitch, a solmization system was used.[11]

The tablature of the guqin is unique and complex; the older form is composed of written words describing how to play a melody step-by-step using the plain language of the time, i.e. Descriptive Notation (Classical Chinese); the newer form, composed of bits of Chinese characters put together to indicate the method of play is called Prescriptive Notation. Rhythm is only vaguely indicated in terms of phrasing. Tablatures for the qin are collected in what is called qinpu.

The jianpu system of notation (probably an adaptation of a French Galin-Paris-Cheve system) had gained widespread acceptance by 1900. It uses a movable do system, with the numbers 1,2,3,4,5,6,7 standing for do, re, mi, fa, sol, la, si. Dots above or below a numeral indicate the octave of the note it represents. Key signatures, barlines, and time signatures are also employed. Many symbols from Western standard notation, such as bar lines, time signatures, accidentals, tie and slur, and the expression markings are also used. The number of dashes following a numeral represents the number of crotchets (quarter notes) by which the note extends. The number of underlines is analogous to the number of flags or beams on notes or rests in standard notation.

Jeongganbo(or Chong Gan Bo, 정간보, 井間譜) is traditional Korean musical notation system introduced by Sejong the Great and known as the first musical notation system that is able to represent durations of notes in the Eastern. Among various kinds of Korean traditional music, Jeongganbo targets a particular genre, Jeongak(정악, 正樂).

Notation plays a relatively minor role in the oral traditions of Indonesia. However, in Java and Bali, several systems were devised beginning at the end of the 19th century, initially for archival purposes. Today the most widespread are cipher notations (“not angka” in the broadest sense) in which the pitches are represented with some subset of the numbers 1 to 7, with 1 corresponding to either highest note of a particular octave, as in Sundanese gamelan, or lowest, as in the kepatihan notation of Javanese gamelan. Notes in the ranges outside the central octave are represented with one or more dots above or below the each number. For the most part, these cipher notations are mainly used to notate the skeletal melody (the balungan) and vocal parts (gerongan), although transcriptions of the elaborating instrument variations are sometimes used for analysis and teaching. Drum parts are notated with a system of symbols largely based on letters representing the vocables used to learn and remember drumming patterns; these symbols are typically laid out in a grid underneath the skeletal melody for a specific or generic piece. The symbols used for drum notation (as well as the vocables represented) are highly variable from place to place and performer to performer. In addition to these current systems, two older notations used a kind of staff: the Solonese script could capture the flexible rhythms of the pesinden with a squiggle on a horizontal staff, while in Yogyakarta a ladder-like vertical staff allowed notation of the balungan by dots and also included important drum strokes. In Bali, there are a few books published of Gamelan gender wayang pieces, employing alphabetical notation in the old Balinese script.

Composers and scholars both Indonesian and foreign have also mapped the slendro and pelog tuning systems of gamelan onto the western staff, with and without various symbols for microtones. The Dutch composer Ton de Leeuw also invented a three line staff for his composition Gending. However, these systems do not enjoy widespread use.

In the second half of the twentieth century, Indonesian musicians and scholars extended cipher notation to other oral traditions, and a diatonic scale cipher notation has become common for notating western-related genres (church hymns, popular songs, and so forth). Unlike the cipher notation for gamelan music, which uses a "fixed Do" (that is, 1 always corresponds to the same pitch, within the natural variability of gamelan tuning), Indonesian diatonic cipher notation is "moveable-Do" notation, so scores must indicate which pitch corresponds to the number 1 (for
example, "1=C").

In many cultures, including Chinese (jianpu or gongche), Indonesian (kepatihan), and Indian (sargam), the "sheet music" consists primarily of the numbers, letters or native characters representing notes in order. Those different systems are collectively known as cipher notations. The numbered notation, or numerical notation, is an example, so are letter notation and Solfège if written in musical sequence.

http://edufb.net/2210.pdf
http://edufb.net/2431.pdf
http://edufb.net/1106.pdf
http://edufb.net/551.pdf
http://edufb.net/2149.pdf
http://edufb.net/2680.pdf