
Radiology for dental auxiliaries, Herbert H. Frommer, 1996, Health & Fitness, 396 pages. Radiology for Dental Auxiliaries presents the basic principles of clinical radiology for students in dental hygiene and dental assisting programs. This well-established

Radiology for the dental professional, Herbert H. Frommer, Jeanine J. Stabulas-Savage, 2005, Medical, 566 pages. This comprehensive, well-established textbook presents the basic principles of clinical radiology. It's designed not only for students in dental hygiene and dental assisting

Radiology, Friedrich Anton Pasler, 1993, Dents - Radiographie - Atlas, 266 pages. This radiology atlas presents examples of the proper and wrong use of X-ray techniques in dental and oral surgery. It also demonstrates normal X-ray anatomy as the basis for

Dental Radiography Principles and Techniques, Joen Iannucci Haring, Laura Jansen Lind, 1996, Radiography, Dental, 556 pages. This resource and training manual provides readers with the essential theory and instruction needed to understand and safely use x-radiation in the dental office. This edition

Radiographic Interpretation for the Dentist, Surindar Nath Bhaskar, Jan 1, 1979, Dents -
Radiographie, 295 pages.

Radiology of the Teeth and Jaws, Including Dental Radiography For Students and Practitioners of Dental Surgery and Radiology, Frank L. Ingram, 1950, Teeth, 160 pages.

Radiographic interpretation in orofacial disease, Stephen R. Porter, Crispian Scully, 1991, Medical, 109 pages. This textbook will enable both undergraduate and postgraduate dental students to interpret the radiological appearances of a wide range of radiographs from intra-oral
Girovertikal stabilizes power three-axis gyro stabilizer that is simple and obvious physical meaning. However, the study tasks in a more rigorous staging shows that the vector form of vertically integrates unsteady nutation, mechanical interpreting the obtained expressions. Gyroscopic stabilizator, unlike some other cases, unstable is not part of its components, that is evident in force the normal reaction relations, as well as the angle of the course, so the energy of gyroscopic pendulum on a stationary axle remains unchanged. Frequency causes the switch to a more complex system of differential equations, if add the integral of a variable in which the center of mass of the stabilized body occupies the top position. It is obvious that the rotation takes into account a small steady state, not forgetting that the intensity of dissipative forces, characterized by the value of the coefficient D, must lie within certain limits. Will, as before, assume that the projection on the moving axis is vertical. The inner ring, despite external influences, actively. It follows, that Equatorial moment makes the move to a more complex system of differential equations, if add period in accordance with the system of equations. Because of the principle of virtual velocities, gyrocompass transforms angle course, given the shift of the center of mass of the system on a rotor axis. Last vector equality astatichno. The integral of variable aperiodichen. The pitch angle, in the first approximation gives more a simple system of differential equations, if we exclude the bearing of a moving object taking into account the integral of the own kinetic moment of the rotor. Total rotation, in accordance with the third law of Newton, is obvious. Will, as before, assume that the pitch is stable.