

Understanding the Environment Bridging the Disciplinary Divides, R. Quentin Grafton, Libby Robin, Robert Wasson, 2005, Science, 229 pages. This major publication brings together some of the world’s leading environmental researchers in the life sciences, physical sciences, social sciences and humanities to bridge

Invasive Species Detection, Impact and Control, Charles P. Wilcox, Randall B. Turpin, Jan 1, 2009, , 217 pages. Invasive species is a phrase with several definitions. The first definition expresses the phrase in terms of non-indigenous species (e.g. plants or animals) that adversely

Australian ecosystems 200 years of utilization, degradation and reconstruction : proceedings of a symposium held in Geraldton, Western Australia, 28 August-2 September, 1988, Ecological Society of Australia, 1990, , 602 pages. .

Connectivity Conservation Management A Global Guide (With Particular Reference to Mountain Connectivity Conservation), Graeme Leonard Worboys, Wendy L. Francis, Michael John Lockwood, 2010, Business & Economics, 382 pages. In an era of climate change, deforestation and massive habitat loss, we can no longer rely on parks and protected areas as isolated 'islands of wilderness' to conserve and

The marine environment is multi-dimensional and highly complex, with processes interlinked across the oceans' spheres and constituents. Single-discipline approaches are increasingly coming to a limit in their power to explain processes and their implications. In recent years, more and more marine scientists have started to consider how organisms or chemicals are linked across habitats and scales. This conference provided a forum to discuss the state of the art for investigating marine connectivity, novel approaches and technical advances, and the meaning of connectivity in the
The conference addressed the "What", "Where & How" and "Why" of marine connectivity. Molecules, sediments and nutrients are transported and transformed by processes operating over various scales within the oceans. Marine organisms are dispersing or migrating in various life stages across interfaces or into adjacent habitats. Connectivity has implications for biogeographic distributions, resilience and resource management and protection. Further sessions will be dedicated to novel methods to study connectivity, and on improved networking of the scientific community.

From 1985 to 1994, he was Lecturer and then Senior Lecturer in Environmental Studies at Macquarie University, with responsibility for teaching ecology & biology, research methodology, the design of impact assessments and environmental monitoring, conservation, resource management and environmental philosophy. There he supervised postgraduate research and was the recipient of five research grants from federal government funding schemes like the Australian Research Council.

From 1994 to 1997, he was Senior Research Scientist, then Project Leader and Principal Research Scientist with CSIRO Division of Water Resources (later CSIRO Land & Water) based at Griffith, NSW. There he led a project examining the ecological impacts of agricultural chemicals on riverine environments and contributed to the design and statistical analysis of studies into the water requirements for aquatic and riparian vegetation, water quality monitoring, and blue-green algal
In his present position, Professor Fairweather heads more than 12 academics within the Marine Biology & Aquaculture cluster at Flinders University. His current research interests include studies of food webs in a variety of coastal marine and estuarine ecosystems, especially whether upwelling can affect intertidal assemblages, the influences of groundwater upon nearshore coastal ecosystems, scaling issues and patchiness of biological community structure, human impacts as disturbances, and ecological monitoring via the use of bioindicators of ecosystem health.

Professor Fairweather has written 12 monographs and published (or had accepted) more than 65 refereed papers or chapters in the scientific literature, is currently preparing more than 25 others, and has produced more than 165 items in other forms of research output. He has published research on a wide range of taxa from algae to cetaceans living in a wide range of aquatic habitats.

His research interests span the ecology of natural habitats in marine coastal environments. In particular, Professor Fairweather has been concerned for the last seventeen years with the assessment of human impacts (such as water pollution, recreational effects and the harvesting of resources) and conservation efforts on invertebrate assemblages. These interests have regularly led to numerous consultancies with all tiers of government and private enterprise, advising on the design and review of environmental research programs.

Professor Fairweather has served on the Editorial Board of the Australian Journal of Ecology from 1987 to 2000. As an Editor, he handled more than 200 manuscripts, and during 1995-6 served as its Receiving Editor, in charge of the triad of Editors. He was on the foundation Editorial Board of the journal Ecological Management and Restoration from 1999 to 2006. At present, he is a member of Editorial Advisory Committee for the international journal Marine and Freshwater Research.

Prof. Fairweather is currently seconded (on a part-time basis until at least July 2010) to work as a senior scientific advisor for the Coast and Marine Conservation Branch of the SA Department for Environment & Heritage, where he has a key role in ensuring that as sound a scientific basis as possible exists for planning for the establishment of 19 new marine parks within that state by 2012. This follows on from his previous experience with marine protection and biodiversity conservation in NSW during the 1980s and 1990s and in Victoria during 1997-2001. It also builds on his membership of the Scientific Working Group on Marine Protected Areas & Marine Planning, SA Government.

http://edufb.net/1627.pdf
http://edufb.net/713.pdf
http://edufb.net/895.pdf
http://edufb.net/1327.pdf